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NUMERICAL SOLUTION FOR THE STEADY-STATE COEFFICIENTS 

OF THE INVERSE HEAT-TRANSFER PROBLEM FOR STRATIFIED MEDIA 

P. N. Vabishchevich and A. Yu. Denisenko UDC 536.24:5].7.958 

Problems of the uniqueness of the inverse heat transfer problem for stratified 
media are considered and algorithms for computing approximate solutions are 
discussed. 

The coefficients of the inverse problem are of great practical importance in the theory 
of heat transfer [i, 2]. At present attention is being turned to the problem of determining 
the thermophysical properties (the coefficients of heat capacity and thermal conductivity), 
which depend on the temperature. A second important class covers inverse heat transfer 
problems for stratified media and composite materials. The problem of establishing the tem- 
perature dependence of the coefficient of thermal conductivity of a coposite material from 
temperature measurements within the field has been considered in [3, 4]. In the case of 
small temperature gradients (small layer thicknesses, large number of layers) it is valid 
to assume that the thermophysical properties depend on one variable. A steady-state inverse 
heat transfer problem for a stratified medium is considered in the present paper. 
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The problem of the uniqueness of the solution of the inverse problem of the determina- 
tion of the coefficient of thermal conductivity with respect to additional data at the bound- 
aries of the field is investigated. Various routes are described toward finding approximate 
solutions by numerical methods, and the case of the piecewise-constant unknown coefficient 
of thermal conductivity is selected. 

Statement of the Problem. The steady-state temperature field in a confined zone D of 
a stratified medium is described by the equation 

L u ~ - - - v ( k v u ) ~ O ,  x = ( x l ,  x2) ED. (1)  

The coefficient of thermal conductivity k in gq. (i) depends only on the variable x1: k = 
k(xl). It will be assumed that the heat flux is given at the boundary ~D of the zone: 

Ou 
. . . .  X(x), xCOD. (2 )  

On 

Wi thou t  r e s t r i c t i n g  t h e  g e n e r a l i t y ,  l e t  us assume t h a t  t h e  zone  D i s  convex .  The i n v e r s e  
c o e f f i c i e n t  p rob lem i s  s e t  up as  f o l l o w s .  A p a i r  o f  f u n c t i o n s  { u ( x ) ,  k ( x l ) }  i s  so u g h t  
which s a t i s f y  Eq. (1)  in  t h e  zone D and t h e  c o n d i t i o n s  on t h e  boundary  aD ( t h e  t e m p e r a t u r e  
i s  m e a s u r e d ) :  

u (x) = ~ (x), x E OD. (3 )  

(3)  t h e  t e m p e r a t u r e  c o n d i t i o n s  on a p a r t  o f  t h e  boundary  3D' c 3D may be Instead of Eq. 
given. 

The inverse problem (1)-(3) arises in the determination of the piecewise-constant co- 
efficient of thermal conductivity k(x I) of composite materials. 

Uniqueness of the Solution of the Inverse Heat Transfer Problem. The usual procedures 
are used for proving the uniqueness of the solution of the nonlinear inverse problem (I)- 
(3) [5]. Assume that there are two solutions to the problem (i)-(3), {u~(x), k1(xl)} and 
{u2(x) , k2(xl)}, respectively. Each of them satisfies the equation 

L = u ~ O ,  x 6 D  (4 )  

and t h e  boundary  c o n d i t i o n s  

u= (x) = ~ (x), Ou___~ 
On (x) ~= Z (x), x C OD, (5)  

where ~ = i, 2. For the difference v(x) = ul(x) - u2(x) a linear inverse problem is found 
from (4)-(5) for determining k I - k 2 from the equation 

and the boundary conditions 

Llv :-" V ((te~ - -  ks) Vu.,+), x 6 D, ( 6 ) 

OU 
v (x) --.-- O, ~ ( x ) = : O ,  x6OD. 

Allowing for the fact that k = k(x~), the right-hand part of Eq. 
t h e  form 

v ((k~-- k~) V u.,) :: d (k~ - -  k2) Ou., + (kl - -  I~,,) Au~. 
dx, c?x~ 

( 7 )  

(6 )  i s  r e a r r a n g e d  t o  

(8) 

From Eq. (4) with ~ = 2 it is found that 

k.2hu~- dk~ 
dxt 

The substitution of (8) and (9) into Eq. (6) gives 

du.2 

Oxl 
( 9 )  

Llv== Ou? k . . . d  
Oxl dxl 

k i - -  k., 

k,, 
(10) 
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Thus, the uniqueness of the inverse problem (1)-(3) is equivalent to the uniqueness of 
the solution of the inverse problem (7), (i0) by the definition of the right-hand part 

d ( k l - - k  ~ ) ,  ( x , )  k2 

w h i c h  d o e s  n o t  d e p e n d  on t h e  v a r i a b l e  x 2. F rom t h e  f o r m  o f  t h e  r i g h t - h a n d  p a r t  o f  q ( x  1) 
i t  f o l l o w s  t h a t  t h e  c o e f f i c i e n t  o f  t h e r m a l  c o n d u c t i v i t y  i s  e s t a b l i s h e d  a p a r t  f rom a c o n -  
s t a n t  m u l t i p l i e r ,  s i n c e  w i t h  k 1 = c o n s t  k 2,  n = O. T h u s ,  i n  o r d e r  t o  d e t e r m i n e  k ( x l )  i t  i s  
necessary to define it at some point x* e D. 

Uniqueness with such additional conditions follows from [6, 7]. In particular, in [7] 
it is found that n(xl) = 0 for a cylindrical region D when 8uz/3x I e 0 and 82u2/Sx18x2 ~ 0. 
The latter of the restrictions on the behavior of u2(x) is probably caused by the method of 
the proof, and no problems occur. 

In the case when the additional condition (3) is given on a part of the boundary 8D' c 
8D, it is sufficient for uniqueness of the solution that 8D' is the base of a cylinder [7]. 
In a rectangular zone D = {(xl, x2); 0 < xl < a, 0 < x z < b} information is given on 8D' = 
{ ( x ,  0 ) ;  0 ~ x l  ~ a } .  

Numerical Method. For the approximate solution of the problem (1)-(3) the following 
difference functional is minimized: 

7(k)= ( ( u ( x ) - ~ ( x ) ) Z d x .  (ii) 
5D 

Gradient methods [8] are used for this purpose; these are widely applied in the numerical 
solution of inverse heat transfer problems [i]. The nonstandard element in this approach 
is connected with the evaluation of the gradient of the functional. 

Let us define the gradient J(k) over the increment 6k. With an accuracy to terms of 
the second order of smallness it is then found for the corresponding increment 6u that 

where L6u ~ - 7 ( 6 k V u ) .  

L6u-{- L6u = O, xC D, 

The boundary condition for 6u has the form 

06u 
( x ) - - 0 ,  xEOD. 

On 

(12) 

(13) 

The gradient J(k) is defined on the basis of an investigation of the increment of the Lagrange 
function [8]: 

6 (h) = j (k) "- f ,1 (x) L .  (x) dx.  
b 

It is found that 

6G .= ! 2 (u - -  %') 6udx q- i" q: (L6u -q- L6u) dx. 
b'D [])" 

(14) 

By using Green's formula it is found from (14) that 

~o = [ 2 (. - ,~.) 6.dx + ~ ~.L,~,dx + f k ( ,  O~. 
~;o D" "OD On On o 

(15) 

For the last term it is found that 

( ,Lo.d  j'v (6k,v ) + S 6kV,v.dx = 
15 D D 

Xlmax 
Ou = [ 6k(xl) P(xl)dxl, 
On OD D Xl min 

(16) 

where xnnin=minxl, x,m~x--n~axxJ, and P(xl) is defined with respect to ~(x) and u(x), x e D. 
D D 
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Taking into account the boundary condition (13) and that 6G = 0, it is found from (14)- 
(16) that 

X l m a x  

,' 2 ( .  - ~,~ ~ ,d~ + ~" ~, i .~;:o. , . -  ( k6~ ar  ax :~: j' ak I,-,) ,~ (x,~ ,ix,. 
i~'D ' iS ,~5 an ( 17 ) x l m~n 

The quantity ~(x) is determined from the equation 

L~--.O. x6D, (18) 

which i s  supplemented by the  boundary cond i t i on  

k -O'~ - 2 ( u - - q : ) ,  xCOD. (19) 

In t h i s  case the  g r a d i e n t  of the  f u n c t i o n a l  has the  form 7J(k) = P ( x l ) ,  where P(x l)  i s  de- 
termined according  to gq. (16).  

P iecewise-Cons tan t  Media. For p iecewise  cons t an t  c o e f f i c i e n t s  k(x l) the  s o l u t i o n  has 
to be sought in the  paramet r ic  c l a s s  ( f i n i t e - d i f f e r e n c e  o p t i m i z a t i o n  [8 ] ) .  In t h i s  case 
k (x l )  i s  r ep re sen t ed  in the  form 

k(xO = ~m~(xO, (20) 

where qi(xl) , 
2 .... , m, are determined. 
satisfied that 

where 

i = i, 2 ..... m, are given and the coefficients of the expansion ~i, i = i, 
For the gradients of the functional (ii) it is found when (20) is 

aJ _. ( 2 (u - -  ~p) *idx. 
aai o5 

The functions ~i(x) are found from the solution of the problem 

i~i  : V(~iVu), x6 D, 0 ~  --0, x6OD. 
On 

Difference methods [9] are used in the numerical solution of the boundary value problem for 
determining U(M), ~(X), ~i(X), i = I, 2 .... , m. 

The inverse problem (i)-(3) is uncorrected. For establishing a regularized solution use 
is mmde of the usual approaches [I, 8] connected with interrupting the iteration process un- 
til the functional level of the error is achieved and using a coordinating functional. 

A statistical approach is used for establishing the piecewise-constant coefficients 
k(xl) with fixed boundaries ~f the layers. For given limits ~i min g ai E ai,max, i = i, 2, 
.... s the statistical selection is carried out on the basis o~ generating random numbers 
in ans parallelepiped [10]. In practice the limits ~i,min, ~i,max are determined 
from an analysis of a priori information. Tl~e algorithm for the statistical selection of the 
parameters is selected in such a way that the difference between ~i,min and ai,max is narrowed 
down in the course of the calculations. Such an approach has a number of advantages especial- 
ly when the well developed and rapid methods for solving the direct problems of the type (i)- 
(2) are taken into account. In particular, the method is convenient to use in problems with 
many criteria when different types of information must be dealt with. In addition, this ap- 
proach makes it possible to use an interactive (dialog) method of operation on the computer. 

NOTATION 

u, temperature; k, coefficient of thermal conductivity; x = (xx, x2) , spatial variables:; 
D, convex region; BD, boundary of region D; n, normal; X, heat flux on boundary of region; 
c~, temperature on boundary of region; ~u, ~k, increments in the temperature and coefficient 
of thermal conductivity; ~, solution of conjugate problem. 
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